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----&-_-A- A R S T R  A C T  

I .  

Methods of simulating the behavior of liquids in  a low-gravity environ- 

ment by experiments in Earth based laboratories a r e  discussed, with a n  

attempt made to  point out the advantages and limitations of each. Two prom-  

ising methods a r e  indicated: small models, and magnetic fluids. It i s  con- 

cluded that these methods should be developed further,  not only to  complement 

orbital experiments but a lso to  give preliminary data at low cost. 

ii 
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I. INTRODUCTION 

The behavior of liquids subjected to  greatly reduced body forces has 

become an  a r e a  of active interest, especially as concerns those par t s  of the 

behavior that pertain to the design of space vehicles. In hydrodynamic systems 

that operate independently of the linear acceleration of the vehicle (for example, 

closed loop flow systems), the magnitude of the body forces is of little or  no 

consequence. 

in a rocket tank, the body forces  (i. e . ,  the "weight" of the liquid) induced by 

But whenthe liquidpossesses a f r e e  surface, as does the liquid fuel 

the l inear  acceleration of it a s  a whole a r e  usually predominant in controlling 

the location of the liquid in its container and in  determining the motion of the 

liquid. Consequently, when the linear acceleration and the body forces  a r e  

very srriall, such liquids tend to act in a manner that i s  considerably at 

variance with that which pr ior  experience might lead one to expect. 

because other small  forces ,  which a re  usually negligible when the body forces 

a r e  large,  become important here. Any kind of force whose magnitude is 

independent of gravity* thus might be considered important in low-gravity 

fluid mechanics. Two examples are:  interfacial forces  between the liquid 

and its vapor o r  the ullage gas; and small body-like forces  that a r e  caused 

by rotations of the spacecraft. 

This is 

Vehicles used f o r  deep-space probes a r e  in  an almost zero-gravity 

Because of this, the designer environment f o r  an extended period of time. 

must be able to determine under low-gravity conditions such things as the 

location of the fuel in the tanks when an engine must  be ' restarted,  the length 

*The word "gravityt1 will be used a s  a short  synonym for  the phrase "linear 
acceleration of the liquid as a whole. 



the magnitude of the gravity field cannot be changed on Earth, it is sometimes 

possible to  manipulate the other variables that enter the dimensionless groups 

so that the groups as a whole take on the proper low-gravity magnitude. 

Alternatively, by using such techniques as drop towers o r  certain other 

laboratory methods, the net body forces in  the liquid can be made to approach 

zero. 

It is beyond the scope of this report to  enumerate every possible 

dimensionless group that shouPd be simulated in a true "low-gravity" experi- 

ment; Saad and DeBrock 

dimensionless parameters  may be formed and evaluated as to the role each 

plays in  determining liquid behavior. 

11 * give a n  account of the manner in which the 

In any given situation, the experimenter 

2 
of time it takes for transient motions to  decay after the engines a r e  shut down 

and the forces  exertedon the tanks during this period, the magnitude of the 

slosh-induced forces  and moments during low thrust  midcourse maneuvers, 

and the behavior of boiling vapor bubbles when their  buoyancy is small. 

Nonetheless, experimental data f o r  these kinds of phenomena a r e  currently 

not abundant -- for  the obvious reason that a low-gravity laboratory is not 

available on Earth. 

possible in vehicles i n  space, therefore, one must rely on low-gravity simula- 

tions i n  the laboratory. 

/ 

Until such t ime as fluid mechanics experiments become 

- 
Low-gravity simulation is feasible because, as in other physical 

problems, it is the magnitude of various dimensionless products of the 

dimensional variables that govern the fluid's behavior; therefore, even though 

*:Numbers in  brackets re fer  t o  the References at the end of this report. 



3 
must  decide in advance what parameters  a r e  important and design his experi- 

ments accordingly. Nonetheless, some of the parameters  that seem to be 

important in most low-gravity problems are:  
2 

(Ap is the change in density f rom Ape a .  L 
T 

the liquid to the gas across  their  common interface. Here, a is 
the magnitude of gravity, L i s  a pertinent length dimension, and 
T is the interfacial tension between the liquid and the gas). NBo 
i s  an indication of the size of capillary o r  surface tension forces 
compared to gravity o r  body forces. NBo < 1 i s  the regime of 
capillary dominated (low gravity) fluid mechanics, while NBo >> 10 
indicates the high-g regime. The Bond number, f o r  example, 
plays an important role in differentiating between ordinary high- g 
and low-g f r ee  surface motions and in predicting whether a vapor 
bubble will break up into smaller  bubbles. 

(1) Bond number, NBo = 

(2) Weber number, NWe = (V is a characterist ic velocity). T 
It gives an estimate of the relative importance of inertial  forces 
and capillary forces;  for NWe >> 10, capillary forces influence 
the dynamic behavior only slightly. 

(3)  Solid-liquid-gas contact angle 8,. The angle a t  which the liquid 
meets  the tank walls at liquid-tank-gas intersections under low- 
gravity conditions largely determines whether the liquid free 
surface will be nearly flat or highly curved. The change in  8, 
a s  the f r ee  surface moves, called contact angle hysteresis ,  is 
also an important.variable because the amount of hysteresis  
strongly affects the total energy dissipation during the motion. 

Reynolds number, N R ~  = p 

NRe determines when viscous forces  a r e  important. 

2 Froude number, NFr = V /gL. 
the rat io  of iner t ia  forces to  gravity forces.  It generally is an 
important scaling parameter  in motions of a liquid possessing a 
f r ee  surface when gravity is present. 

~ 3 / 2 a 1 / 2  
(4) (p is the dynamic viscosity). 

tJ 

(5) The Froude number indicates 

Other parameters  that may be needed in special situations a r e  the 

P - Pv 
PLa 

cavitation parameter ,  (PV is the vapor pressure  of the liquid), and the 

K compressibility parameter ,  - (K is the bulk compressibility). A variety of 
PLa 

other parameters  can a l so  be formed [ 11 
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The purpose of this report is to describe laboratory techniques 

of duplicating the actual low-gravity values of the above parameters ,  espe- 

cially the Bond number, by adjusting the values of the other variables that 

enter into the definitions of them. Some of the methods described already 

have been used, others a r e  still  in the evaluation stage. 
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11. DISCUSSION O F  SIMULATION METHODS 

Perhaps the most popular method of simulating a low-gravity environ- 

ment, at least  in point of the amount of data generated, is the use of drop 

towers, in  which the entire fluid mechanics experiment is allowed to fall 

freely for  distances on the order  of hundreds of feet. During the free-fall 

period, the effective gravity acting on the experimental package can be a s  low 

as of standard gravity, go, o r  as high a s  0 .1  go, depending on the drag 

shield arrangements and auxiliary thrusters  (References [ 21 through [ 51 a r e  

typical of the many kinds of published experimental investigations). 

The drop-tower method has the obvious advantage that it is able to  

give an  actual duplication of a low-gravity acceleration. This allows a great 

deal of b x i b i l i t y  in choosing values for  the other scaling parameters ,  and 

thus generally resul ts  in a good overall modeling of full-scale phenomena. 

The disadvantages a r e  that all the observations of the falling experimental 

package must be made remotely and that the duration of time in which the 

experiment must be conducted is quite short. 

of testing t ime makes it difficult to arrange f o r  the initial transients upon 

entering the weightless state to  decay in  t ime f o r  other phenomena to be studied. 

Thus, f o r  example, i t  is nearly impossible to  c a r r y  out a study of steady-state 

low-gravity sloshing o r  to get a complete picture of everything that occurs 

during reorientation of the liquid. Nonetheless, valuable information has been 

In particular,  the short  length 

obtained, especially fo r  the more fundamental aspects of low-gravity fluid 

mechanics. 
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On the other hand, it is not necessary to use a drop-tower to study the 

hydrostatic configuration of the liquid, since it is determined only by the 

magnitude of the Bond number (based on a characterist ic dimension of the 

f r e e  surface) ,  the value of the contact angle e,, and the geometry of the 

container. 

is the Bond number, since i f  small values of Ap 

The only one of these parameters  that is difficult t o  scale properly 

a L 2 / T  a r e  desired,  it is 

usually necessary to use containers of small dimensions. 

vent the small tank handicap has  been devised by Olsen 

liquid between two very  closely spaced glass plates (a "Hele-Shaw cell") such 

that the thickness of the liquid layer  is thin compared to its other l inear 

One way to  c i rcum- 

61. By containing the 

dimensions, the glass  plates can be tipped almost to the horizontal without 

"spilling" the liquid. 

sin 9, where 9 i s  the angle of inclination of the plates f rom the horizontal, 

Since the effective gravity acting on the liquid is go x 

the Bond number can be varied by varying +. Nearly ze ro  gravity is obtained 

when the plates are  nearly horizontal. 

may still yield small values of N B ~ .  

photographs in [ 51, shows some of the resul ts  of this apparatus i n  simulating 

Thus, reasonably large values of L 

Figure 1 (see next page), adapted f rom 

the effectiveness of a standpipe in  retaining the liquid in  one end of the tank. 

I f  the Bond number, the contact angle, and geometric s imilar i ty  are 

used as scaling factors ,  Olsen's simulator gives an  exact representation of 

the hydrostatic liquid configuration in two-dimensional tanks and a fair ly  good 

approximation for  three -dimensional axisymmetric tanks. The simulator has 

the advantage of giving a wide range of values of NBo with the same tank and 

same  fluid. However, because of the la rge  viscous forces  induced by fluid 

motion in the narrow space between the plates, the simulator appears  to  be 
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Bond number: 375 

Tank diameter 12.7 cm 
Angle of incl ination 0.84 x 16' rad 

47 
1.1 x 16' rad 

12.7 cm 

Bond number 3.95 
Angle of incl ination 0.89 x rad 

Tank diameter 12.7 cm 

N O .  22 
-5 x lO-'rad 

12.7 cm 
IO74 

Figure 1. Simulation of Free- Surface Retention by a standpipe 
at low gravities ( Adapted from Ref. 5 1 
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usable only in studying static configurations; that is ,  the Reynolds number 

would be too far out of scale for any dynamic simulationof full-size phenomena. 

Another example of the same sort  of simulation technique is the use of 

model tanks of extremely small size. 

liquid under low gravity i s  modeled by the Bond number, where now the 

pertinent l inear dimension is related to the dimensions of the f ree  surface; 

for  example, in an axisymmetric tank, the proper  L is the radius of the 

circular  planform of the f r ee  surface. Thus, to achieve really small  Bond 

numbers, containers of almost minute diameter must be used. * The simulation 

is exact,-but quite elaborate optical techniques a r e  necessary to measure the 

configurational parameters  of the liquid [ 7, 81. However, some relief on the 

tank s ize  can be obtained by using two immiscible liquids whose densities a r e  

The hydrostatic configuration of the 

slightly different; by floating the lighter liquid on the heavier, the interface 

between the two i s  governed by the Bond number based on the difference in 

densit ies,  ra ther  than on the density of either one separately. t The heavier 

liquid will assume the correct  hydrostatic configuration for this Bond number. 

F o r  moderately small Bond numbers, the dynamics of liquid motion 

can a l so  be investigated with the aid of small models. In addition to geometric 

s imilar i ty  and the Bond number and static contact angle cr i ter ia ,  the Reynolds 

number and the contact angle hysteresis should be modeled properly for an 

exact simulation of full-scale behavior. At this time, the exact requirements 

*If water  is the contained fluid, the tank diameter for a given NBo is 

tUsing the same example a s  the previous footnote, the tank diameter i s  now 
d = 2(NBoT/pg)1/2 

given by d = 0. 548 (NBo/Ap), where Ap, the density difference, i s  in 
gm / cm3. 

0. 548 (NB0)'i2 centimeters.  
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for scaling the contact angle hysteresis are unknown except when the hysteresis 

is zero,  in which case the contact angle of the moving fluid is always equal to 

the hydrostatic fluid. * The Reynolds number similarity between model and 

f u l l  scale prototype also imposes a stringent requirement on the tank size 

since the Reynolds number increases  rapidly with decreasing tank size. 

a n  example, Figure 2 is a c ros s  plot of Bond number, tank size, and logarith- 

mic decrement for  free surface sloshing, which i l lustrates this point. 

log decrement is computed f rom the formula 6 = 8. 34 v 

neglects any damping caused by a curved f ree  surface or contact angle hysteresis  

Typically, the viscous damping in  full-scale tanks is very small; therefore, one 

should t r y  to hold the damping below, say, about 0.02 of critical, which co r re -  

sponds to a logarithmic decrement of about 0. 12. F o r  decrements significantly 

As 

(The 

1/2d-3/4 -1/4,  which 
g 0  

l a rge r  than this, the viscous forces  certainly would become too large to give a 

usable simulation. Thus, according to Figure 2,  a Bond number of about 5 is 

just  about the smallest one for which a liquid dynamic simulation can be 

achieved, at least using water as the tes t  liquid. 

of this same magnitude. ) F o r  NBo = 5, the corresponding tank diameter works 

out to be about 1. 2 cm;  thus, no visual problems a r i se ,  but sophisticated 

dynamometers and electronic equipment a r e  required to  measure the dynamic 

parameters  of the liquid motion [ 1, 91. 

(Other liquids give resul ts  

F r o m  the previous remarks ,  it can be concluded that a simulation of 

liquid dynamic behavior using small models can be successful only for  

*It has  been conjectured that the hysteresis  is indeed always z e r o  if pure  
fluids and very  clean, hard  surfaced containers are used. 



10 

. 

I I I 1 I I I 

0 20 40 60 80 100 

Bond number lots 

0.16 

0.12 

0.08 

0.04 

0 

Figure 2. Tank diameter and log decrement for given Bond number, 
with water as test liquid, at standard gravity 
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NBo Z 10. 

orbiting vehicles near  Earth,  typical values of NBo fo r  deep-space vehicles 

While this encompasses most  of the liquid propellant problems in  

are at least one order  of magnitude smaller  than this. Nonetheless, it should 

'be emphasized that much of the vexing behavior of the liquids in  l a rge  pro-  

pellant tanks (for which NBo > 10 in Earth orbit) can be studied with the aid 

of properly designed experiments with small models. 

In order  to extend more  nearly to ze ro  the range of obtainable Bond 

numbers,  witho-ut a proportionate increase in the viscous s t r e s ses ,  the net 

body force acting on the fluid particles must be made smaller.  

towers are able to do this for  short periods, other means of cancelling the 

Although drop 

gravitational body forces  a r e  needed for  experiments requiring longer test  

periods. Body forces  induced by electric,  electromagnetic, and magnetic 

means have been suggested fo r  this purpose. 

Dielectrophoresis is  the name given to the process  in  which very strong 

electr ic  fields are used to induce body forces  in a dielectric ( i . e . ,  poorly con- 

ducting) fluid [ 10, 1 1 1 .  The magnitude of the induced force is proportional t o  

the gradient of the square of the electric field; that i s ,  F' a3 grad (2 -  2).  By 

establishing an electr ic  field in  the liquid such that grad (E. E) is constant in 

space and of the proper direction, the gravitationally induced body force,  pg,, 

may be partially o r  completely cancelled. The liquid, then, will react  statically 

and dynamically the same as i f  the only body force acting were equal to the 

difference between the gravitationally and electrically induced body force;  in 

short ,  a t rue  low-gravity simulation is possible. There a re ,  however, 

several  disadvantages to this method. 

with dc fields, a layer  of e lectr ic  charge is gradually deposited on the f r e e  

An ac  electr ic  field is required, because, 
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surface*; since the charges a r e  all of the same sign, they repel each other, 

causing a n  effect just the opposite of surface tension and tending to  make the 

f r ee  surface break up. When ac fields a r e  used, the accumulation of charge 

can be kept low enough s o  that no instability occurs;  the electrically induced 

body force,  however, var ies  in magnitude at twice the frequency of the electric 

field variation. Furthermore,  specially designed electrodes a r e  required to 

give electr ic  fields having the proper gradient. 

ment is the extremely la rge  electric fields needed to give reasonable body 

forces .  Because of the limitations of high voltage generators currently 

available, it seems that, even here ,  small models a r e  required i f  l a r g e  

e lectr ic  fields are to be generated. t Dielectrophoresis would appear, then, 

But the most stringent require- 

to have no real advantages for  studying liquid dynamics, although it does hold 

promise f o r  such phenomena as boiling heat t ransfer ,  where the buoyancy of 

the vapor bubbles must be made zero, o r  in  other cases  in  which the body 

force really should be very  small  rather than mere ly  small in  comparison to 

other forces .  

Magnetohydrodynamic cancellation of gravity forces  i s  another technique 

In this method, the additional body forces  a r e  caused by that can be used [ 121. 

the interaction of c rossed  magnetic and electric fields. 

is shown in Figure 3. 

is supposed to be much greater  than L (i. e. , the tank is essentially 

One such arrangement 

The tank is  rectangular, and its length into the paper  

SNo liquid is perfectly nonconducting. Thus, the applied electr ic  field will 
cause some small current ,  which eventually results in an accumulation of 
charge at the f r e e  surface.  

tThe  strength of the electric field is ,  roughly, equal to the applied voltage 
divided by the distance between the electrodes;  thus, high fields require  
small models. 
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Wall B 

Electric f i e l d 8  
E 

Walls A and B are conductive 
Walls C and D are nonconductive 

T Note: - >> 1 L 
1076 

Figure 3. MHD arrangement in rectangular tank 
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two-dimensional). The liquid is nonmagnetic and has a finite electrical  con- 

ductivity, U. 

The net body force  on a liquid particle is - pgo z' t J"X g,where 7 

is the current  density and B is the magnetic field strength. If the fluid has  a 

4 4 -  A 

velocity v, the current  is J = F(E t V X B); except for small  induced electro- 

magnetic fields, the body force,  then, is  - pgo t c IE'I 1st 1 t ~ ( v '  X E) X B'. 
By picking appropriate values of E' and E, the f i r s t  t e r m  in the body force can 

be made a s  small as possible. Thus, for hydrostatic studies (i. e . ,  v' = 0), a 

true low-gravity environment can be obtained. 

(although if the excitation is in the x-direction, v' X B' is almost zero)  and, thus, 

the influence of the small residual body forces  should be evaluated. 

In dynamic studies, vis not ze ro  

/ 

It should be noted that both the  magnetic field lines and the electric 

field l ines  should be straight and orthogonal to  each other in  the fluid i f  the 

electromagnetic body force is to be a constant and opposed to the gravitational 

body force.  

very close to  that of air, and hence the magnetic field l ines will remain 

straight regardless  of the liquid's configuration. 

the free surface,  however, must bend around until the current  is tangent to  

the free surface.  

two-dimensional situation by arranging the fields as shown in Figure 3. 

Unfortunately, this arrangement  will not work in  a three -dimensional case ,  

so  the magnetohydrodynamic technique appears  to  be most useful for two- 

dimensional geometries. 

Now, the magnetic permeability of most conducting liquids is  

The electric field l ines near  

Nonetheless, orthogonality can be closely approached in a 

One other drawback might be the necessity of 

cooling the liquid to  dissipate the Joulean heat generated by the currents .  



A third method of cancelling the gravitational body force is  to  use 

a magnetic f1uid;k in the presence of a suitably directed magnetic field. 

Papell  and Faber  [ 131 have employed such a method t o  study reduced-gravity 

boiling, with good results;  the technique has  also been described elsewhere 

[ 14, 15, 16, 171. 

adding submicron size i ron oxide particles to fo rm a colloidal suspension; then, 

when in  a magnetic field, a body force proportional to the gradient of the mag- 

In this method, an ordinary fluid i s  made magnetizable by 

netic field is exerted on the fluid. If the fluid and its container a r e  placed 

near the centerline of the core  of a high quality solenoid-type electromagnet [ 131 , 

the gradient of the magnetic field is constant and the magnetic body force induced 

in  the liquid is a lso constant and can be directed s o  as to cancel, or  partially 

cancel (depending on the strength of the field), the gravitational body force. 

Thus, here, as well as in the dielectrophoresis and magnetohydrodynamic 

techniques, an  actual low gravity is  created.  

The re  appear to be no obvious disadvantages in  the use of magnetic 

fluids, other than that the tank can be no bigger in  diameter than about three 

inches, which is the core  diameter of available la rge  solenoid type electro-  

magnets [ 131. Since the magnetic field lines for such magnets run in  the 

axial direction, any axisymmetrical or  two-dimensional configuration can be 

used, i n  contrast  to  the magnetohydrodynamic technique; fur thermore,  the 

magnetic body forces  induced by currently available magnets a r e  sufficiently 

la rge  to give true zero-gravity, in contrast  t o  the small induced forces  of 

*<A more  exact name is magnetizable fluid, since the fluid i s  not magnetic in  
the sense that it possesses  a magnetic field. 
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currently available dielectrophoresis techniques. However, even in the best 

electromagnets, there  is some variation in  the magnetic field across  the core  

diameter ;  the effect of this on the zero-gravity simulation needs to  be assessed  

as well as possible anomalous surface effects that appear occasionally [ 141. 

Other zero-gravity simulations are possible in special situations. 

Kana and Dodge [ 181 describe a method in  which vapor bubbles appear to 

lose  their  buoyancy (i. e . ,  a r e  in  zero-g) when placed in  a pulsating pressure  

field. Kana and Chu [ 191 describe experiments in which neutrally buoyant 

bubbles a r e  simulated by inflated balloons, counterweighted to cancel their 

buoyancy; this appears to be useful in  preliminary studies of the behavior of 

vapor bubbles (or of the ullage bubble) in  ze ro  gravity. 

have studied low-gravity liquid reorientation by using a particular fo rm of 

free-falling liquid in  conjunction with small diameter models. 

Saad and Debrock [ 11 

Other simulation techniques will  no doubt appear a s  research into 

z e r o  - gravity fluid mechanics progress  e s, but the fore going de s c r iptions 

cover the most  widely used methods currently being studied. . 



111. C 0 NC LU SIONS 

A number of techniques for  simulating low-gravity fluid mechanics in 

a one-g environment have been described in this report. Except in  a few 

instances, all the methods have in common the fact that only the liquid behavior 

is simulated; in those cases  where the weight o r  density of the E above the 

liquid is important, other simulation methods must be used. Furthermore,  

most of the remarks  made apply only to situations in which the liquid behaves 

isothermally. It i s  possible, however, to simulate nonisothermal cases ,  such 

as heat t ransfer  and stratification, by modeling the appropriate dimensionless 

parameters ;  for  example, magnetic fluids [ 131 have been employed to study 

low-gravity boiling. 

Two of the methods described appear to be the most promising ones 

for fur ther  work. Small diameter tanks give an adequate simulation of liquid 

dynamics in Bond number ranges greater than about ten; this method is fairly 

trouble-free and has  been shown to be valuable in previous research  [ 7 through 

91. The use of magnetic fluids can be used in  the lower ranges of Bond 

numbers;  this method has  been employed previously in  limited experiments 

[ 13 through 193 and i s  a lso the most practical  way actually to cancel the 

existing gravitational body forces.  

Certainly, these two laboratory techniques require fur ther  develop- 

mental work. 

cost of their  development in relation to the development costs of orbital experi-  

ments,  the only real alternative, is small indeed. Moreover, laboratory 

simulation experiments will be needed to guide orbital experiments,  which 

But there  a r e  several  reasons for  pursuing this work. The 



a r e  largely one-time-only affairs and which might not be designed properly 

without p r io r  information. Likewise, a great deal of valuable information 

can be obtained by simulation experiments during the period before orbital 

experiments become practical. Fo r  these reasons,  i t  seems that laboratory 

simulation methods will always be a needed tool in the investigation of low- 

gravity fluid mechanics. 
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